Single Subject Designs

Why Use Single Subject Designs?

• Useful for applied research
 – Establishing utility of interventions
• Provide useful feedback
 – About progress of an individual intervention program

What is a Single-Subject Design?

• Repeated, systematic measurement of DV
 – Before, during, after manipulation of IV
• DV usually human characteristic
• IV usually involves application of intervention
Characteristics of SSD

- Repeated observation
 - Same behavior measured repeatedly
 - Determines consistency over time
 - Serves as a control for variability
- Consistent observation technique
 - Conditions for data collection
 • Standardized
 • Trained observers
 - Allows meaningful comparisons over time

Characteristics of SSD

- Description of conditions
 - Clear and detailed
 - Strengthens internal & external validity
- Baseline and treatment conditions
 - Baseline
 • Target behavior (DV) observed & recorded
 • No intervention/treatment (IV)
 - Treatment
 • Experimental manipulation (IV) is introduced
 • Target behavior (DV) observed & recorded
 • Long enough to achieve stability in DV

Manipulation During Treatment

- Operant
 - Behavior that operates on environment
 - Response that will be strengthened/weakened
- Reinforcement
 - Increases behavior
- Punishment
 - Decreases behavior
Manipulation During Treatment

- Operationally define behavior and treatment
- Determine behavioral baseline (A)
 - Measure and record behavior repeatedly
- Introduce treatment (B)
 - Measure and record behavior repeatedly
- Remove treatment (A)
 - Measure and record behavior repeatedly

Observation and Manipulation Phases

- Length
 - Until behavior is stable and consistent
- Changing phase
 - Treatments introduced, withdrawn or changed
- Measuring the response
 - Most common: rate of response
 - Total frequency of response
 - Time response occurs

Measuring Response

[Graph of Cumulative Record of Response and Graphing Data in Single Subjects Designs]
Types of Single-Subject Designs

- Withdrawal Designs
 - A-B
 - A - B - A
 - A - B - A - B
- Multiple-Baseline Designs
- Alternating-Treatments Designs
- Changing-Criterion Designs

A-B Withdrawal Design

- Used to quickly assess the effects of a treatment
 - Phase 1 (A)
 - Measure baseline response
 - Phase 2 (B)
 - Introduce treatment while measuring response
- Disadvantage
 - Inability to distinguish experimental effect from confounds

Example of A-B Design

- Bob has a habit of cursing at work
 - Co-workers complain
- Treatment
 - Pay $5
- “Session” = Work day
Example of A-B Design

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of curse words (DV)</td>
<td></td>
</tr>
<tr>
<td>Sessions (time)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

A-B-A Withdrawal Designs

- Simplest of single subject designs
- Repeatedly introduces and withdraws treatment
 - Baseline phase (A)
 - Treatment phase (B)
 - Withdrawal phase (A)

Example of A-B-A Design

- Cat loves to play with the family dog
- Dog not tolerant of cat
 - Captures cat between teeth
 - Painful to cat
- Change dog’s behavior
 - Use behavior modification
Example of A-B-A Design

• Instituted sophisticated verbal treatment
 – The "NO! - NO!—BAD DOG!" treatment
• Week 1: Recorded number of times dog bit cat
• Week 2: Every time dog bit cat, instituted treatment while continuing to record behavior
• Week 3: Record behavior without treatment

Example of A-B-A Design

A-B-A Advantages and Disadvantages

• Advantage
 – Withdrawal phase
 • Allows more reliable assessment of intervention effects
 • Confounds
 – Unlikely to co-occur repeatedly with treatment
• Disadvantage
 – Can’t use with irreversible treatment effects
 – Ethical concerns with withdrawing treatment
 – Use A-B-A Designs
Example of A-B-A-B Design

- Taylor (4 yrs old)
 - Partial leg paralysis
 - Lacks upper body strength
- Goal
 - Increase strength and endurance
- Target behavior
 - Ambulate 10 consecutive lengths of parallel bars
 - No rest breaks
 - 3 consecutive days
- Treatment
 - Wheelchair pushups
 - Bar graph monitoring of progress

Example of A-B-A-B Design

Multiple Baseline Designs

- Evaluation across individuals, settings, or behaviors
- Useful for evaluating interventions
 - Likely to cause enduring change in DV
- Withdrawal designs
 - Use withdrawal phase to control threats to internal validity
- Multiple baseline designs
 - Control by varying length of the baseline
Example 1a of Multiple Baseline

- Intervention
 - Enhancing quality of life in public housing
- Intervention
 - Community organization
- Behavior
 - Time to repair apartments

Example 1b of Multiple Baseline

- Threats to internal validity
 - Controlled by multiple baselines
 - 3rd variable problem
 - Show up on all charts simultaneously
- Causal inferences
 - Depend on independent observations across charts

Example 1b of Multiple Baseline

- Explanation for changes across charts
 1. Third variable causes change
 2. Intervention B causes change
 - Observations are not independent
Alternating Treatment Designs

- Useful for evaluating effect of several treatments
 - Same individual
- Different treatments
 - Alternated several times
 - Order randomly determined or counterbalanced
- Each treatment replicated
 - Each time introduced

Alternating Treatment Designs

- After baseline
 - Treatments administered
 - Alternating
 - Instructions before each treatment
- Possible confounds
 - Counterbalanced during experiment
- Data plotted separately
 - For each intervention

Example of Alternating Treatment Design

- Treatment A
 - Social reinforcement for cooperating
 - Ignoring uncooperative behavior
- Treatment B
 - Social reinforcement for cooperating
 - Time out for uncooperative behavior
- Treatments alternated during day
 - Morning session
 - Afternoon session
Changing Criterion Design

• Variation of multiple-baseline design
• Useful for incrementally changing target behavior
 – Criteria for target behavior set
 – When criteria met
 • Set new criteria
• Each phase provides baseline for subsequent phases

Example of Changing Criterion Design

• DV = # math problems solved correctly
• Baseline worksheet with 9 division problems
• Criteria set at 2 correct problems solved
• Increased +1
 – 3 consecutive days criteria met

External Validity Issues

• Single subject designs criticized
 – Issues related to external validity
• Behavior analysts
 – Concerned with establishing robustness of a few variables
 • Reinforcement
 • Stimulus control
 – Not concerned about individual differences
• Direct, systematic replication is important
Benefits of Single Subject Design

- Rigorous methodology
 - Identify functional variables.
- See pattern of action of DV
- Make informed statements about:
 - Acquisition
 - Maintenance
 - Generalization

Benefits of Single Subject Design

- Study low incidence populations and behaviors
- Cost effective
 - Evaluate intervention prior to large scale study
- Flexible design is adaptable to situation
- Can be conducted in practice settings
 - Test clinical hypotheses
 - Monitor progress in applied settings

Limitations of Single Subject Design

- Does not answer questions related to external validity very well
 - Not intended for those types of questions
- Data analysis via visual inspection of data
 - Can result in unreliable interpretation
 - No established standards
 - Low agreement among observers
Limitations of Single Subject Design

- Aggregating results across studies
 - No established methods
 - Meta-analysis may be useful
 - Important for validating interventions as “evidence-based”
 - Practitioners do not have time/access to primary source material
- Standards for validating interventions as evidence-based
 - Just emerging
 - No consensus among standards

In Class Exercise
ABA Design

- Break into groups of 4 – 6 students
 - Each student pairs up with another student
 - Decide who will record behavior and who engage in behavior
- Hypothesis: Exercise increases pulse rate
- Treatment = exercise
 - Operationally define “exercise”
- Behavior = pulse rate
 - Heart beats per minute
 - (If beats in 30 seconds) × 2
- Define exercise – note on sheet
 - Measure & record behavior in 1 minute intervals
 - Baseline, treatment, withdrawal
 - Complete graph for each student engaging in behavior