Problem Solving

Terminology

- Problem solving
 - Goal is not readily available
 - Use knowledge to reach goal
- Initial state
 - State you are in when you encounter problem

Terminology: Problem Space

- Set of choices
 - Found at each step of solving the problem
- Includes
 - Initial, intermediate, and goal states
 - Knowledge being applied to problem
 - Knowledge that could be applied
 - External devices, objects, resources
- Range on continuum from large to small
Terminology: Operators

- Legal operators or moves performed during problem solving
- Classes
 - Algorithms
 - Heuristics

Algorithm

- Precise rule
 - Always yields a correct solution to the problem
- Frequently slow and inefficient
 - Exhaustive search
 - Search entire problem space
 - Difficult for humans
 - Easy for computers

Heuristic

- Rule of thumb
 - Likely, but not guaranteed, to generate solution
- Selective search of problem space
 - Examine only those parts likely to lead to solution
- Example – multiple choice tests
 - “B” or “C” answers the most frequent
Terminology: Goal state

- Ultimate solution to problem
- Problem defined in terms of goal state specification
 - Well-defined problems
 - Ill-defined problems

Well-defined and Ill-defined Problems

- Well-defined
 - Clear goal
 - Small set of information to start
 - Guidelines or rules
- Ill-defined
 - Unclear goal
 - Starting information, operators or both are vaguely specified
 - Many real world problems

Types of Problems

- Problems of arrangement
- Problems of inducing structure
- Problems of transformation
- Insight problems
Problems of Arrangement

• Present objects
 – Require problem solver to arrange objects
 • Satisfy criterion
 – Only a few arrangements result in solution
• Anagrams

Arrangement Problem Skills

• Fluency in generating possibilities
 – Generate many potential solutions
 – Discard inappropriate solutions
• Retrieval of solution patterns
 – Anagram example – words from memory
• Knowledge of constraining principles
 – Anagram example – relative frequency of words in the language

Problems of Inducing Structure

• Finding a pattern among a fixed set of relations
 – Some objects given
 • Figure out how objects relate
• Examples
 – Series extrapolation
 – Analogy
 – Progressive matrices
Inducing Structure Skills

• Identifying relationships among components
• Fitting relationships into patterns

Problems of Transformation

• Changing initial state until it matches goal state
• Supply goal state
• Example
 – Book burners and book lovers problem
• Skills
 – Planning

Insight Problems

• Insight problems (Tower problem)
 – Solution suddenly enters the mind
 • Immediately recognized as correct
 • Restructure conceptualization of problem
• Non-insight problems (anagram problem)
 – Solve problem gradually
 – Reasoning skills and routine procedures
• Solution accompanied by an “AHA!” experience
Solutions to insight problems

- Metcalf & Wiebe (1987) studied insight problems
- Compared insight to algebra problem solving
 - “Warmth ratings”

Insight Controversy

- Some researchers question the concept of insight
- Propose
 - Gradually work towards a solution
 - Solution just “feels” different
- Some non-insight problems solved by restructuring

Approaches to Studying Problem Solving

- Classic approach
- Computer simulation
- Verbal Protocols
Classic Problem Solving Research

- Gestalt psychologists
 - Perception and the structure of patterns
 - Arrangement problems
- Kohler (1925) & Sultan
 - Cage contained sticks and boxes
 - Rearrange objects to get fruit

Computer Simulation

- Develop computer programs for problem solving
 - Based on human problem solving performance
- Examine
 - Sequence of steps
 - Constraints
 - Representation

Computer Simulation

- Computer model created
 - Based on theory of human problem solving performance
- Computer modeling
 - Mimic human performance
 - Good understanding of problem solving performance
 - Fails to accurately model performance
 - Theory needs to be revised
Advantages of Computer Simulation

• Forces researchers to be explicit & specific
 – No generalizations
 – Pay attention to details
• Can be used to make predictions
 – Tested on human subjects

Disadvantages of Computer Simulation

• “Just get the program running”
 – No longer mimics human performance
• Forced to work on artificial or very simple problems
 – Examine limited and artificial types of problem solving

Real Problems

• Traveling Salesperson Problem
 – Each city in a network of connected cities must be visited exactly once.
 – The goal is to find the shortest trip
• Medical diagnoses
Verbal Protocols

- “Think out loud” data
- Provides information
 - Sequence of steps taken during problem solving
 - Constraints observed
 - Heuristics used

Verbal Protocols (cont.)

- Messy/Noisy data
 - Great deal of information
 - Very rich data set
- Problem solving graphs
 - Transcribed, transformed, and reduced protocols
 - Trace mental representation of problem
 - Show possible states and operators
 - Applied to knowledge in each state
 - Change the state

Problem Representation

- Symbols
- Lists
- Matrices
- Hierarchical Tree
 Diagram
- Graphs
- Visual Images
Symbols

Use symbols to represent variables in problem
– Algebra

Disadvantages
– Difficult to use with ill-defined problems
– Difficult to translate words into symbols

Matrices

– Chart
– Shows possible combinations of problem
– Usefulness
 – Complex problems with categorical information
Hierarchical Tree Diagram

- Uses tree-like structure
- Specifies every possible outcome
- Useful for assessing probability of outcomes

Hierarchical Tree Diagram. Suppose that you are playing a coin game with two children, Chris and Pat. You toss each of three coins. If it's heads, the coin goes to Chris; if it's tails, it goes to Pat. What is the probability that one child will get to keep all three coins? Solving this problem with a list format typically leads to an incorrect outcome. (Kersten, 1984)

Visual Images

- Images are free from rationality
 - Escape from boundaries of traditional representations
- Images are concrete
 - Can serve as symbols for more abstract concepts
Problem Solving Heuristics

- Hill climbing/ Simple search
- Means-ends
- Working backwards
- Analogy

Simple Search / Hill Climbing Heuristic

- Examine all possible operators to identify all possible next states
- Compare each of these states to the goal state
- Choose the state that is closest to the goal state

Local maxima

- Local maxima can cause hill-climbing heuristic to fail
- Consider only a limited range of choices
 - Look one move ahead
- Many solutions require moving away from a goal to ultimately achieve it
Means-Ends Heuristic
(Forming Subgoals)

- Divide the problem into smaller problems
- Solve smaller problems
- Means – ends
 - Figure out ends for each sub problem and the means by which those ends will be achieved
- Sometimes solving subgoals requires the formation of other subgoals

Main Problem: Getting from New York to San Francisco
- Subgoal 1: Get on plane to San Francisco
 - Subgoal 1a: Get to airport
 - Solution: Use map to drive to airport
 - Subgoal 1b: Get on plane
 - Sub-subgoal: Find plane
 » Solution: Consult arrival/departure boards

Working Backwards

- Start from goal
- Determine what needs to be done for goal to be true
- Repeat at each step
- Useful
 - # states preceding goal is small
 - # states following start is large
Analogy

- Using a solution to an earlier problem to help solve a new one
 - Very common method of problem solving
- Target domain
 - The problem you are trying to solve
- Source domain
 - The problem or domain you use as an analogy to solve the current problem

Problem Structure

- Require us to ignore the surface details of a problem
- Need to determine problem structure
- Problem isomorphs
 - Same underlying structures and solutions
 - Different surface details

Retrieving Correct Source

- The use of analogy requires application of appropriate source analog
- Sometimes difficult to retrieve appropriate analog from memory
- Gick & Holyoak (1980)
 - Examined the use of analogies in problem solving in two studies
Gick & Holyoak (1980) Study 1

- Parade problem and then Radiation problem
 - 49% solution rate
- Attacking General problem and then Radiation problem
 - 76% solution rate
- Radiation problem alone
 - 8% solution rate

Gick & Holyoak (1980) Study 2

- Read the Attacking General problem and its solution and then solve the Radiation problem
- Hint
 - 92% solution rate
- No hint
 - 20% solution rate

Creation of a general schema

- Schema creation aids in solving problem isomorphs
- Gick & Holyoak (1983)
 - Formation of convergence schema requires that people compare two analogous stories
 - Makes them think about the solution in general terms
Barriers to Problem Solving

- Problem solving involves some sort of obstacle to overcome in the process of reaching a goal
- Fixation
 - An impediment to problem solving
 - When fixated, you are stuck on some aspect of a problem which blocks your ability to reach a solution

Perceptual fixation

- Involves perceptual (visual/spatial) assumptions about the problem domain that blocks your ability to reach a solution
Mental Set

- Rule-based fixation
- Getting stuck on a set of rules to solve a problem

<table>
<thead>
<tr>
<th>Problem</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Measure set this much more</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>117</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>46</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>61</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>61</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>62</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>49</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>