Mental Imagery

What is Imagery?

• What is nature of the images?
 – Exact copy of original images?
 – Represented in terms of meaning?
 • If so, then how does the subjective sensation of an image arise?
• What is the nature of imagery for the other senses?

What We Can Imagine

• Things we have directly experienced
• Things never directly observed by our senses
• Things which could never actually exist
Difficulties Studying

- Subjective
- Difficult to verify accuracy of self report
- Introspection
- Functional equivalence

Functional Equivalence Hypothesis

- Visual imagery not identical to visual perception
- Visual imagery is functionally equivalent to visual perception
 - Can guide hypotheses

Functional Equivalence Hypotheses

- Mental transformations/movements
 - Longer to scan across large distances?
- Spatial relations
 - Easier to see details of large images?
- Generating information
 - Possible to answer questions unrelated to encoding?
- Construction of mental images
 - Longer to construct a complex mental image?
- Processing images
 - Same brain regions involved in both imagery and perception?
Mental Transformations

- Mental rotation tasks
- Shepard & Metzler (1971)
 - "Are they the same figure?"
- Decision time influenced by amount of time needed to rotate the figures
- Mental operations similar to physical operations

Mental Rotation

- Cooper & Shepard (1973)
 - Used familiar stimuli
 - Provided cue
 - Varied time prior to presenting rotated figures

Image Scanning (Kosslyn, Ball, & Reiser, 1978)

- Learn map of imaginary island
 - Objects on island (hut, tree, lake, etc.)
- Learn until accurately reproduced from memory
 - Objects placed < 1/2 inch from correct location
Image Scanning

- Testing
 - Imagine mentally traveling to named object
- Measured response times
- Linear relationship between distance and scan time
- Suggests mental images are scanned similarly to physical images

Functional Equivalence Hypotheses

- Mental transformations/movements
 - Longer to scan across large distances?
- Spatial relations
 - Easier to see details of large images?
- Generating information
 - Possible to answer questions unrelated to encoding?
- Construction of mental images
 - Longer to construct a complex mental image?
- Processing images
 - Same brain regions involved in both imagery and perception?

Spatial Relations (Image scaling)

- Imagine
 - Elephant – rabbit
 - Rabbit – fly
 - Rabbit – elephant sized fly
 - Rabbit – fly sized elephant
- Asked about specific features of image
- Reaction time measured
Spatial Relations (Image scaling)

- Slower to describe details of small objects
- Screen resolution for mental images
 - More detailed for images taking up more space

Functional Equivalence Hypotheses

- Mental transformations/movements
 - Longer to scan across large distances?
- Spatial relations
 - Easier to see details of large images?
- Generating information
 - Possible to answer questions unrelated to encoding?
- Construction of mental images
 - Longer to construct a complex mental image?
- Processing images
 - Same brain regions involved in both imagery and perception?

Generating Information

- Angle size comparisons
 - Paivio (1978)
- Imagine analog clocks
 - Could be imagined more precisely
 - Could be imagined more consistently
- Decision time related to difference between angles
 - Parallels research in psychophysics
Analog Representation

- Information about a mental image stored in an analog code
 - Sheppard, Kosslyn, Finke
- Closely resembles physical referent

Analog Evidence

- Studies on visual imagery testing the functional equivalence hypothesis
 - Image scanning, mental rotation, angle size comparisons
- Suggest mental images are analogous to physical images
- Mental operations on mental images operate similarly to physical operations on physical objects

Analog Problems

- Selective maintenance in details of mental images
- Difficulty reinterpreting ambiguous figures
 - Chambers & Reisberg (1985, 1992)
- Difficult to form clear stable images of distorted objects
 - upside down, out-of-focus, mirror image
Propositional Representation

- Image code is in the form of an abstract language-like representation
 - Anderson & Bower, Pylyshyn
- Storage is neither visual or spatial
- Image does not resemble original stimulus

Propositional Representation

- Images and verbal statements represented in terms of deep meanings
 - As propositions
- Mental images are generated from this propositional representation
Dual-Code Hypothesis

- Information can be represented by both/either propositions and analog images
 - Paivio (1969,1971)
 - Kosslyn (1994)

Kosslyn (1994)

- Images have two components
 - Surface representation
 - Quasi-pictoral
 - Deep representation
 - Stored in LTM
 - Literal information
 - How something looks
 - Propositional information
 - Describes in verbal terms

Road-Route Knowledge

- Road-route knowledge
 - Knowledge of specific pathways for moving from one location to another
 - May be based on procedural knowledge and declarative knowledge
 - Learned from navigating through the environment
 - Takes longer to learn than survey knowledge
 - More flexible and orientation free than survey knowledge
Landmark & Survey Knowledge

- Landmark knowledge: knowledge about specific features at a location
- Survey knowledge: involves estimated distances between landmarks much as they might appear on survey maps
 - May be represented imaginally or propositionally
 - Bird’s eye view often learned from maps

Cognitive Maps

- Similar to actual maps
 - Do not actually resemble mapped area
 - Symbolic representation of area
- Preserve crucial spatial information
 - Functionally relevant information preserved
- Subject to distortions and inaccuracies

Distortions in Cognitive Maps

- Thorndike (1981)
 - Learn map of hypothetical region
 - Cities distributed at various distances from each other
 - 100, 200, 300, 400 miles
 - Intervening cities
 - 0, 1, 2, 3
 - Given 64 city pairs - estimate distances between them
 - The more intervening cities, the greater the estimated distance
Distortions

- Road-route distance
 - Estimate shorter distances if road route is a straight line
- Semantic categories
 - Shift landmarks closer to other in the same semantic category
- Right-angle bias
 - Assume two roads cross at a 90 degree angle

Heuristics

- Symmetry
 - Represent shapes and countries as symmetrical
- Rotation
 - Images represented as vertical or horizontal
- Alignment
 - Assume alignment
- Relative position
 - Effect of semantic knowledge

Memory for Pictures

- Humans have excellent visual memory
- Shepard (1967)
 - Ss shown 612 pictures or 612 words
 - 2 hour delay
 - Recognition test
 - Pictures - almost perfect recognition
 - One week delay - 87%
 - Words - 88%
Memory for Pictures

- Standing (1973)
 - Determine limits of visual memory
- 10,000 pictures over 5 days
- Tested immediately after session on 5th day
- Ss remembered ~6600 pictures

Images and Advertising

- Selling product
 - Requires memory for the name of the product
- People typically have poor memory for advertised products
 - Even after only a 30 minute delay

Pairing Product with Brand Name

- Essentially a paired associates task
- Advertisers capitalize on visual memory
- Combine product and brand name
 - Single interactive picture
 - Facilitates recall of brand name
Lutz & Lutz (1977)

- Searched yellow pages for ads
 - Interactive Illustration
 - Picture Interaction
 - Letter accentuation
 - Noninteractive Illustration

Lutz & Lutz (1977) Procedure

- Ss studied 24 brand-product pairs
 - 10 sec each
- Control group studied brand-product pairs
 - No images
- Recall
 - Given 24 products and asked to recall brand name

Lutz & Lutz (1977) Results

- Performance highest for interactive illustrations
 - Almost entirely driven by picture interaction
 - Letter accentuation performance much worse
- Noninteractive illustration
 - Performed equivalently to control group